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Chapter 6

Study Designs for Biobank-Based Epidemiologic Research 
on Chronic Diseases

Esa Läärä 

Abstract

A review is given on design options to be considered in epidemiologic studies on cancers or other chronic 
diseases in relation to risk factors, the measurement of which is based on stored specimens in large biobanks. 
The two major choices for valid and cost-efficient sampling of risk factor data from large biobank cohorts 
are provided by the nested case–control  design, and the case–cohort design. The main features of both 
designs are outlined and their relative merits are compared. Special issues such as matching, stratification, 
and statistical analysis are also briefly discussed. It is concluded that the nested case–control  design is 
better suited for studies involving biomarkers that can be influenced by analytic batch, long-term storage, 
and freeze-thaw cycles. The case–cohort design is useful, especially when several outcomes are of interest, 
given that the measurements on stored materials remain sufficiently stable during the study.

Key words: Nested case–control , Case–cohort, Matching, Stratification, Statistical analysis, Risk factors

Epidemiologic studies of chronic diseases require large study 
populations and skillful planning on various aspects of study 
design, selection of the study subjects, measurements of the values 
of interesting risk factors and other variables, organization of the 
follow-up for identification of the study outcomes, and analysis of 
the results. Careful planning is even more demanding, when mea-
surements are based on stored biological materials, such as tissue 
or blood specimens, considering the labor and costs associated 
with them.

In this paper, a review is presented on the choices of epide-
miologic study designs to be considered in this kind of investiga-
tions. Our special focus is on the nested case–control  (NCC) 
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design and the case–cohort (CC) design. More detailed accounts 
on the various designs are given in many excellent textbooks, such 
as those of dos Santos Silva (1) and Rothman et al. (2). Important 
aspects of the two major designs from a more statistical perspec-
tive are concisely and quite untechnically treated, e.g., by Borgan 
and Samuelsen (3). Vineis et al. (4) provide an extensive discus-
sion on the relative merits of the NCC and the CC designs with 
special reference to biobank-based studies, and they offer thoughtful 
guidelines for choosing between them.

As a concrete introduction to the theme, two representative 
examples of modern biobank-based epidemiologic research are 
briefly summarized.

Example 1. “Activation of maternal Epstein-Barr virus infec-
tion and risk of acute leukemia in the offspring” (5). The study 
population comprised a joint cohort of ca. 550,000 offspring, 
their mothers being identified from the Icelandic and the Finnish 
biobanks covering pregnant women. Serum samples were routinely 
taken from all these women in the first trimester of pregnancy, 
from 1975 to 1983 onwards in the two countries, respecively. 
Follow-up of the offspring began at birth and lasted until 1997. 
In the total of 7 million person-years of follow-up, 304 cases of 
acute lymphatic leukemia (ALL) and 39 cases of other leukemias 
(non-ALL) occurring in the offspring by 15 years of age were 
identified from the national cancer registries. Three or four con-
trol subjects for each case were sampled from the original cohorts 
by incidence density sampling. The control subjects were matched 
with the case on biobank/country, maternal age at serum sam-
pling (±2 years), date of specimen collection (±2 months), as well 
as on gender, and date of birth (±2 months) of the offspring. The 
frozen sera from mothers of these cases and from 943 mothers of 
the control subjects were analyzed for antibodies to viral capsid 
antigen (VCA), early antigen, and EBV transactivator protein 
ZEBRA. One major result was that “EBV VCA IgM antibodies 
were associated with a statistically significant relative risk of child-
hood ALL (odds ratio = 1.9, 95% confidence interval: 1.2, 3.0).”

Example 2. “Risk alleles of USF1-gene predict cardiovascular 
disease” (6). The study population comprised two FINRISK 
cohorts in Finland, in total ca. 14,000 males and females, of ini-
tially 25–64 years of age. The cohorts were recruited in 1992 and 
1997, respectively. The baseline measurements comprised a health 
examination and a structured questionnaire, and blood specimens 
were also taken at entry. A subcohort of 786 subjects was ran-
domly sampled from the cohorts. The cohorts were followed-up 
from entry to 31 Dec 2001 and 31 Dec 2003, respectively. In the 
112,000 years of total follow-up, 528 new cases of cardiovascular 
diseases (CVD) were identified in the cohorts, of which 72 were 
in the subcohort. The frozen blood specimens pertaining to the 
cases and the subchort members were genotyped. One of the 
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main results was that “female carriers of a USF1 risk haplotype 
had a twofold risk of a CVD event (hazard ratio (HR) 2.02; 95% 
confidence interval (CI) 1.16–3.53), after adjustment for con-
ventional risk factors.”

An epidemiologic study is a measurement exercise (2). The object 
of measurement is some parameter of interest, such as the hazard 
rate ratio (HR or “relative risk”) of a major coronary event 
between individuals with a high-risk and a low-risk haplotype, 
respectively. The result of this exercise is an estimate of the param-
eter, which is an empirical measure to be computed from the 
available data. Estimates of the HR include the incidence rate 
ratio (IR or incidence density ratio) obtained from a cohort study, 
or the exposure odds ratio (EOR) from a case–control  study.

The estimation of a parameter is prone to error; we can 
express an estimate as a sum of three components:

= + +Estimate true parameter value bias random error.

Common sources of bias or systematic error include (a) con-
founding or non-comparability of the exposure groups, (b) mea-
surement error and misclassification, (c) non-response, losses to 
follow-up, or otherwise incomplete data, and (d) sampling and 
selection of subjects to the study and to be measured. An educat-
ing presentation on various biases is given by Maclure and 
Schneeweiss (7). The main sources of random error are in turn (a) 
biological variation between and within individuals, (b) measure-
ment variation, (c) sampling (whether random or non-random), 
and (d) division of exposure (whether properly randomized or 
non-randomized).

An epidemiologic study is said to be valid, when its design 
and methods would provide an unbiased estimate of the parame-
ter (such as HR) of interest. Unbiased estimation means that the 
estimate (like IR or EOR) would equal the true parameter value 
(HR) if the study had no random error. For example, if the true 
HR on CVD events for high- vs. low-risk haplotype carriers was 
2.5, this value would be exactly obtained by our estimate IR if we 
had unlimited amount of data and if our designs were valid. (NB. 
By exceptional luck, we could get an IR of 2.5 also with typical 
amount of data even with a biased design!)

The precision of an estimate means smallness of random error 
in estimation. Random error is measured by the variance or stan-
dard error (SE) of the estimate, or by the confidence interval (CI) 
of the parameter. The efficiency of a design means its ability to 
provide a precise estimate with given data. We say that design A is 

2. Validity and 
Efficiency of an 
Epidemiologic 
Study
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more efficient than design B if either (1) with the same amount of 
data, the estimate from A has a smaller random error than that 
from B, or (2) smaller amount of data is needed by design A to 
obtain the same precision as that obtained by B.

An outline of a typical cohort study or a full cohort design is as 
follows:

	 1.	Subjects fulfilling the eligibility criteria are selected to the 
study cohort.

	 2.	Risk factors of interest as well as relevant confounders and 
effect modifiers are measured in all cohort members.

	 3.	New incident cases of outcome (e.g., cancer) are identified 
during the follow-up from the time of entry to until the time 
of exit from the follow-up.

	 4.	Incidence rates = cases/person−time in the exposure groups, 
and the ratios (IRs) between them are computed.

	 5.	Confounding and modification are controlled by stratifica-
tion and Mantel–Haenszel methods, or nowadays more com-
monly by regression modeling: the Poisson regression, or the 
proportional hazards (Cox) model.

In both examples presented in the introduction, a full cohort 
design would imply that serologic assays for the EBV antibodies 
would have been performed on the sera of all the 550,000 moth-
ers in Iceland and Finland, as well as genotyping for the USF1-
gene would have been conducted for all the 14,000 members of 
the two FINRISK cohorts.

The principle of estimating the HRs of interest from a full 
cohort design is illustrated in the simplest possible setting: one 
single dichotomous risk factor. From the figures given in Table 1, 

3. �Cohort Studies

Table 1 
Crude summary of follow-up results in a cohort study 
addressing the effect of a dichotomous risk factor (“exposed” 
vs. “unexposed”) on the hazard of getting a given disease

Exposed Unexposed Total

New cases D1 D0 D

Person−time Y1 Y0 Y

Incidence rate I1 = D1/Y1 I0 = D0/Y0 I = D/Y
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the target parameter, HR, is estimated by the ratio of the empirical 
incidence rates I1 and I0 in the two exposure groups.

= = = 1 01 11

0 0 0 1 0

//
IR .

/ /
D DD YI

I D Y Y Y

This crude estimation ignores the possible confounding caused 
by other risk factors of the outcome disease, but provides a conve-
nient starting point to illustrate the precision and efficiency of 
different designs.

The precision in the estimation of the HR depends inversely 
on the numbers of cases. The estimated variance of the logarithm 
of the crude IR is, namely, expressed as

1 0

1 1 1 1
.

no. exposed cases no. unexposed cases
= + = +V

D D

From this, we obtain the common approximate confidence limits 
for the hazard ratio: 

× ± ×IR exp( 1.96 )V .

Note that the variance does not depend on the sizes of the exposure 
groups (or their person−times) as such, even if these were millions. 
However, for rare diseases with low rates, large cohorts are needed 
to obtain enough cases for adequate precision.

Collection and processing of data on exposure variables, con-
founders, and modifiers are very slow and expensive in large 
cohorts. It is relatively easy and cheap with data obtained by ques-
tionnaires or from readily available registers. However, it would 
be extremely costly and laborious for, e.g., measurements from 
biological specimens (like genotyping, antibody assays, etc.), 
dietary diaries, and occupational exposure histories in manual 
records. In our two example studies, the full cohort design would 
obviously be an imaginary possibility only.

Thus, a question arises whether we are able to obtain equally 
valid estimates of the interesting HRs with nearly as good preci-
sion as those obtained by some other, less costly strategies. The 
answer is “yes,” and we shall justify this by first inspecting more 
closely the estimation of hazard ratios:

The crude IR in a cohort study can be expressed by

= =

=

=

01

1 0

/ cases: exposed / unexposed
IR

/ person times: exposed / unexposed

exposure odds in cases
exposure odds in person times
exposure odds ratio ( EOR)

D D

Y Y -

-
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In practical terms, this estimator relates the exposure distribution 
observed in the cases vs. the exposure distribution prevailing in 
the whole cohort. A suggestion is thus given for the search of 
more efficient designs:

	 1.	To obtain information on the numerators of the incidence 
rates in the two exposure groups, one should aim at collecting 
exposure data on all possible cases of the outcome disease.

	 2.	As to the denominators of the rates, one may estimate with 
high precision the division of person–times Y1/Y0 into the 
exposure groups by appropriate sampling of referent or “con-
trol” subjects, on whom exposure data will be measured and 
collected, from the members of the whole cohort at risk. This 
idea leads us to the case–control designs.

The general principle in the so-called case–control  or case–base, 
or case–referent designs is the following: The selection of study 
subjects from a given study population is stratified by the out-
come (disease) under study.

The study population comprises subjects who would be 
included as cases if they got the outcome disease during the study. 
Hence, this population may also be called as the source popula-
tion of the cases (2).

In cohort-based case–control  studies, the study population is 
a well-defined closed population, the membership being fixed by 
entry to the cohort and lasting forever. These kinds of case–control 
studies are the focus of this article, and the so-called hospital-
based and register-based case–control  studies are left aside (1).

In all types of case–control  studies, the data on interesting 
risk factors are collected separately from

	 1.	The case group, comprising all (or a high proportion of) the 
D subjects in the study population (total N subjects) encoun-
tering the outcome disease during follow-up

	 2.	The referent or control group, which is a random sample of 
C subjects from the whole population (C much smaller 
than N ), such that the eligible controls must be at risk, i.e., 
alive, under follow-up and still free from the outcome at specified 
time points

Depending on how these time points are actually specified,  
different sampling schemes or designs for the selection of control 
subjects are obtained. The major sampling schemes or designs are 
the following:

4. Case–control 
Studies
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	(a)	 Traditional design (“case–noncase” sampling): Controls 
are chosen from these N − D cohort members who are 
still at risk (healthy) at the end of the follow-up. We do 
not consider this design any further, which is typically 
used in studies of acute diseases (outbreaks). It also pre-
supposes complete follow-up (no losses) of the cohort 
over a fixed-length risk period, which is rarely realized 
with chronic diseses.

	(b)	 Incidence density sampling (or concurrent sampling) 
design: Controls are drawn at different times t during the 
follow-up from these Nt subjects at risk. An important 
special case is the nested case–control  design (NCC), in 
which a set of controls is sampled in a time-matched 
manner from the risk set at each time t of diagnosis of a 
new case.

	(c)	 Case–cohort design (CC): The control group – subcohort – 
is a random sample of the whole cohort (N) at the 
beginning of the follow-up.

It is worth mentioning that the term “nested case–control  studies” 
has variable meanings. In biostatistical literature (3), it commonly 
refers to the most popular variant of density sampling, in which 
time-matching or risk-set sampling is employed: At each time t 
when a new case is found, a set of controls is sampled from the Nt 
members of the study population belonging to the risk-set at time t 
(see above). This is illustrated in Fig. 1. However, in some epide-
miologic texts (1), the “nested case–control design” refers to any 
kind of control sampling when a study population is a well-defined 
cohort, covering thus also the traditional sampling as well as the 
case–cohort design. Here, the word “nested case–control  design” 
is used in the first meaning, i.e., referring to the time-matched 
sampling of controls from risk sets (3).

Note that in this design, a control chosen at a time of some 
previous case can later on become a case, too.

Index case
Healthy until end
Early censoring
Later entry
Very late entry
Early case
Later case

Start End
Study period

Fig. 1. Time-matched sampling from risk sets. Follow-up lines of seven subjects run verti-
cally at different levels, and they may end either by the outcome event (filled circle) or 
censoring (open circle) due to deaths from other causes or emigration. The risk set from 
which controls are sampled at the time of diagnosis of the index case comprises subjects 
(marked by ×) who are alive, free from the outcome, and under follow-up at that time.
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In order to guarantee a valid sampling frame for control selection 
from the relevant risk set at any time, it is very important to main-
tain accurate and complete follow-up also with respect to dates of 
deaths and emigrations occurring in the cohort, apart from the 
outcome events.

Example 1 in the introduction is a typical NCC study. Time-
matched sampling of controls from the risk sets was employed, 
although not explicitly described in this paper that for each case, 
the chosen controls were alive, not censored, and free from leu-
kemia at the date of diagnosis. Close time-matching was actually 
performed on the age scale, too, because the date of birth of each 
control was less than 2 months apart from that of the case. In 
addition to time and age, the selection of controls was matched 
on various other factors, too (more on this in Sect. 6).

Example 2 in the introduction is clearly a CC study. The sub-
cohort, a random sample of 786 subjects from the whole cohort, 
selected at the outset, served as the control group for all subse-
quent cases. In this design, a subcohort member can become a 
case, too, as actually happened to 72 subjects.

The nested case–control  variant of the density sampling 
design (b) is the most popular one in chronic disease epidemiology. 
The case–cohort design (c) is newer, but is gradually gaining in 
popularity. It is particularly recommended when several outcomes 
are of interest, and measurements of risk factors from any stored 
material are relatively stable.

Results from a case–control  study are often summarized as in 
Table 2. From these four counts, the crude exposure odds ratio is 
computed:

= =1 0

1 0

/ cases: exposed / unexposed
EOR .

/ controls: exposed / unexposed
D D
C C

A common but false doctrine, unfortunately still found in many 
elementary textbooks in epidemiology, is that the only parameter 

5.  Estimation, 
Precision,  
and Efficiency

Table 2 
Crude summary of results in a case–control study 
with a dichotomous risk factor

Exposed Unexposed Total

No. of cases D1 D0 D

No. of controls C1 C0 C
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estimable from a case–control  study is the odds ratio, meaning 
specifically the risk odds ratio (ROR)

( )
( )

1 1

0 0

odds of disease in the exposed
ROR

odds of disease in the unexposed

/ 1
,

/ 1
R R
R R

=

−
=

−

where R1 and R0 are the risks of disease over a fixed risk period in 
the two exposure groups. This holds indeed in the traditional 
“case–noncase” design. When the disease is “rare,” the ROR is 
closely approximating the corresponding risk ratio RR = R1/R0 
as well as the HR.

However, in case–control  studies based on density sampling 
or case–cohort sampling, one can estimate directly the HR with-
out any rare disease assumption. For the density sampling, the 
argument is simplified as follows (2): It can be shown that given 
certain assumptions, the exposure odds C1/C0 among the controls 
provide a statistically consistent estimate of the odds Y1/Y0 of 
person−times between the exposure groups in the whole cohort 
from which the cases and controls are sampled. Hence, EOR 
between cases and controls actually is a valid and efficient estimate 
of the unknown HR, which is the target of our interest.

In the case–cohort design, the principle is the same but the 
estimation of the hazard ratio is more complicated. Nevertheless, 
the argument above illustrates the true role of the controls: They 
are NOT representing the population of “non-cases,” i.e., those 
who would remain healthy; instead, they are providing data on 
the distribution of exposures in the whole cohort.

As an aside, another common but misleading textbook wis-
dom says that absolute levels of incidence rates or risks cannot be 
estimated from a case–control  study. This statement holds only 
for studies based on an ill-defined source population of cases, 
such as hospital-based case–control  studies in USA. Suppose, 
however, that (1) a well-defined cohort is followed up for Y total 
person-years, (2) D = D1 + D0 cases plus C = C1 + C0 controls are 
drawn from it, and (3) their exposure assessed. In these circum-
stances, the person-years and the crude absolute incidence rates 
in the two exposure groups k = 0, 1 would be estimated in a 
straightforward way:

= × =
, .k k

k k
k

C D
Y IY

C Y

These crude computations are, however, not useful in real-life 
studies with variable follow-up times over a wide age range. More 
refined methods for absolute risk estimation are available, though, 
as presented by Langholz and Borgan (8).
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Consider next the precision and efficiency of the estimation 
of “relative risk” in case–control  studies. In density sampling, or 
the NCC design, the estimated variance of the logarithm of the 
crude exposure odds ratio may be expressed as

NCC

1 0 1 0

1 1 1 1
=

= cohort variance + sampling variance.

V
D D C C

+ + +

The variance depends thus basically on the numbers of exposed 
and unexposed cases, whenever the numbers of controls C1 and 
C0 are clearly bigger than the numbers of cases. Hence, the variance 
is not much bigger than that in a full cohort study with the same 
number of cases. Usually, the gain to be obtained with more than 
four or five controls per case is marginal. This shows that the 
case–control  design is very cost-efficient!

Some results from Example 1 are summarized in Table  3. 
Ignoring matching for the sake of illustration only, the crude esti-
mate of the HR between the antibody positives and the antibody 
negatives is

= =30 / 274
EOR 1.9

47 / 815

Even though one should not be content with reporting a crude 
estimate when really analyzing matched data, we note that this 
value happens to be numerically the same as the HR estimate (or 
“odds ratio,” as the authors called it) reported in the original article, 
which was adjusted for matching factors and for some other covari-
ates by conditional logistic regression model (see Sect. 7).

The estimated variance of log(EOR) is

1 1 1 1
0.0370 0.0225 0.0595,

30 274 47 815
V    = + + + = + =      

and the 95% confidence interval ranges from 1.2 to 3.1, these crude 
limits being again close to the reported ones. Thus, the variance 

Table 3 
Maternal IgM antibodies to the EBV VCA and the acute lymphatic leukemia (ALL) 
in the offspring. Numbers of antibody positive and negative cases and controls

Maternal antibody status

Positive Negative Total

No. of cases of ALL 30 274 304

No. of controls 47 815 862
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in the EOR estimation was increased only by 0.0225/0.037 = 61%, 
when antibody status was assessed in less than 900 controls, 
compared to the theoretically conceivable full cohort design, 
which would have required altogether 550,000 antibody 
assays.

Matching is a procedure typically applied in nested case–control  
studies. It means stratified sampling of controls, such that for 
each individual case, the controls are chosen from, e.g., the same 
region, sex, and age group, etc., as the case.

The main reason for matching is that it creates similar distri-
butions in controls and cases for the factors used as matching 
criteria, which leads to more balanced comparisons. Hence it 
tends to increase precision and efficiency in HR estimation, but 
only if the matching factors are (1) strong risk factors of the dis-
ease and (2) correlated with the exposure.

In addition, confounding due to observable but not quantifi-
able factors (like sibship, neighborhood, etc.) can be removed by 
close matching, but the bias is removed only if the data are prop-
erly analyzed. Especially in biobank studies matching the controls 
with each case on the storage time, freeze-thaw cycle and analytic 
batch improve comparability of measurements from frozen bio-
logical material (4).

As noted above, in Example 1, the control subjects were 
matched with the cases on time of diagnosis and age. Moreover, 
the controls were drawn from the same biobank/country and the 
same gender group, and the differences in maternal ages were less 
than 2 years compared to that in the cases. In addition, the dates 
of specimen collection were within ±2 months. Hence, matching 
on storage time was realized. It was not mentioned in the paper, 
whether the sera of each case and the matched controls were 
assayed in the same run, and whether they were matched on the 
freeze-thaw cycle, too.

Matching must always be accounted for in the statistical anal-
ysis of data either using simple Mantel–Haenszel estimators or by 
conditional logistic regression modeling (2).

A word of warning about overmatching should be said at this 
point. Matching a case with a control subject, namely, is a very 
different issue from matching an unexposed subject to an exposed 
one, e.g., in a randomized block experiment or in an observa-
tional cohort study – and is much trickier (2).

First, if one employs matching on an intermediate variable 
between exposure and outcome, a bias in effect estimation will be 
introduced. Second, matching on a surrogate or correlate of 

6. Matching  
and Other Forms 
of Stratified 
Sampling
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exposure, which is not a true risk factor of the outcome, would 
lead to loss of efficiency in estimation.

From the latter fact arises the idea of counter-matching (9): 
Choose a control which is not similar to the case with regard to 
the easily measured surrogate, which is strongly correlated with 
the exposure. This procedure tends to increase the statistical effi-
ciency of the design, but necessitates a somewhat more compli-
cated statistical analysis.

In CC studies, the efficiency may sometimes be improved by 
selecting the subcohort from the whole cohort at entry using 
stratified sampling, instead of simple random sampling (10). 
Useful stratification is based on a variable U, which is (a) surro-
gate of the main risk factor Z of interest, and (b) easy and cheap 
to measure, and available for the whole cohort. Stratification by 
U with few strata, the most informative of them getting the great-
est sampling fractions, tends to increase efficiency in estimating 
the HRs associated with Z. Note, however, that this stratification 
may not be efficient for other risk factors.

In previous sections, we presented for illustrative purposes only 
very simple formulas used in crude estimation of the interesting 
hazard ratios. However, when analyzing case–control  data arising 
from whatever design, more refined approaches are needed in 
order to propely allow for the specific sampling design used, 
including possible stratification or matching, as well as for con-
founding and effect-modification due to other relevant risk 
factors.

The most popular approach for statistical analysis is based on 
fitting the proportional hazards (PH) model, also known as the 
Cox model (3). In this model, the hazard (i.e., the theoretical 
incidence rate) of the outcome event at time (often age) t for a 
cohort member i possessing a risk factor profile xi = (xi1, …, xip) is 
expressed as

( ) ( )0 1 1, ; ( )exp .i i i ip pt x t x xb b bλ = λ + +

In this model, l0(t) is the baseline hazard depending on the 
basic time variable t. The parameters b1 …, bp are regression coef-
ficients with the following interpretation. For each quantitative or 
binary explanatory variable (risk factor) Xj, the regression coeffi-
cient bj is interpreted to be the logarithm of the hazard ratio 
(HRj) associated with a unit change of the value of Xj. The hazard 
ratio itself is obtained as the antilogarithm: HRj = exp(bj).

7. Statistical 
Analysis  
of Case–control  
Data
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In the estimation of these parameters, the typical method for 
nested case–control  studies is based on maximizing the partial 
likelihood function, which is equivalent to fitting the equivalent 
conditional logistic regression model (3). This can nowadays be 
easily done by appropriate procedures found in many statistical 
programs (like R, SAS, S-Plus, and Stata). In case–cohort studies, 
the estimation is based on an analogous weighted pseudo-likelihood. 
The computational tools for the partial likelihood mentioned 
above can be used here, too, but they must be supplemented by 
certain additional calculations in order to obtain valid standard 
errors and confidence intervals, which take into account the special 
features of this design. See Samuelsen et al. (10) for details of such 
computations using the R environment.

Estimation of “absolute” risks is also feasible by proper 
weighting, as shown by Langholz and Borgan (8).

Full-likelihood solutions have also been recently developed, 
but they tend to be computationally quite challenging (using 
methods such as, e.g., EM algorithm, and MCMC simulation for 
Bayesian data augmentation).

The properties of NCC and CC designs are now briefly compared 
on a few selected dimensions, based on more detailed discussions 
found, e.g., in references (3, 4).

The statistical efficiency in the two designs is roughly similar 
with the same amount of cases and controls, apart from some 
exceptional circumstances. Statistical analysis and inference in 
NCC studies are fairly straightforward with widely available soft-
ware fitting conditional logistic regression or PH models. In CC 
studies, the analysis is somewhat more complicated, although 
software for PH models can be used when augmented with addi-
tional tricks to get valid SE, etc.

In the NCC design, only the time scale used in the definition of 
risk sets can be the time variable t in the baseline hazard of the PH 
model. However, in the CC design, the analysis of outcome rates 
based on the PH model is possible to conduct on different time 
scales (e.g., age, time since first exposure, or time since entry), 
because the subcohort members are not time-matched to the cases.

Missing data on risk factors may induce bias and inefficiency 
in the estimation of interesting parameters. In a NCC study, 
whenever very close matching was employed, a whole matched 
case–control  set would be lost if the case had data missing on the 
risk factor(s) of interest. In CC studies, missingness of a few data 
items is less serious.

8. Concluding 
Remarks
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Quality and comparability of biological measurements based 
on frozen biological material are a serious concern in biobank-
based studies. The NCC design allows each case and its own con-
trols to be matched for analytic batch, storage time, and freeze-thaw 
cycle. This has the virtue that differential misclassification (1, 2) of 
exposure may be removed. In CC studies, the measurements for 
the subcohort members are performed at different times – typically 
earlier – than for the cases. This may more easily lead to differential 
misclassification and bias with unpredictable direction.

The possibility of investigating many diseases using the same 
control group for each group of cases is complicated (11) in the 
NCC study, and even impossible with too refined matching. In 
CC design, the same control group can easily serve for several 
diseases, because when no matching (on time or any other factor) 
is employed, no subcohort member is “tied” with any case.

In conclusion, cost-efficient sampling designs based on “case–
controlling” are available and widely used in large-scale epidemi-
ologic studies based on biobank cohorts. The NCC design is 
better suited for studies involving biomarkers that can be influ-
enced by analytic batch, long-term storage, and freeze-thaw 
cycles. The CC design is useful especially when several outcomes 
are of interest, given that the measurements on stored materials 
remain sufficiently stable during the study. Finally, proper applica-
tion of these designs requires well-organized follow-up systems 
for accurate identification of cases, deaths, and migrations occur-
ring in the study cohort, as well as adequate statistical expertise in 
both planning and analysis of specific studies.
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